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Abstract—We study the problem of localizing multiple sources
of forced oscillations (FOs) and estimating their characteristics,
including frequency, phase, and amplitude, using noisy PMU
data. We assume sparsity in the number of locations, and for
each location, we model the input FO as a sum of a few unknown
sinusoids. This allows us to obtain a sparse linear model in the
frequency domain that relates measurements and the unknown
input locations at frequencies of the unknown sinusoidal terms.
We determine these frequencies by thresholding the empiri-
cal spectrum of the noisy data. Finally, we cast the location
recovery problem as an `1-regularized least squares problem
in the complex domain—i.e., complex-LASSO (linear shrinkage
and selection operator). We numerically solve this optimization
problem using the complex-valued coordinate descent method
and show its efficiency on the IEEE 68-bus, 16 machine and
WECC 179-bus, 29-machine systems.

Index Terms—Forced oscillations, complex-LASSO, sparsity,
sampled data system, PMU measurements.

I. INTRODUCTION

Detecting and localizing forced oscillations (FOs) is crucial
for safety and reliability of power systems. Detection helps
determine if the manifested oscillations in PMU measurements
are FOs; whereas localization helps to mitigate the oscillations
either by disabling the sources (e.g., malfunctioned controllers
and cyclic loads) or by injecting certain counteracting signals
[1]. Compared to localization, detecting oscillations is easier
and has been well studied in power systems [2].

We focus on localizing the sources of FO, which amounts
to finding m⇤ true sources from m possible sources. A brute-
force search requires searching across

� m
m⇤

�
configurations,

which is prohibited for large m. One way to address this
problem is to find locations that optimizes measures, such as
H2/H1 norms and information-theoretic based measures [3].
Instead, by leveraging the fact that the FO sources are sparse
(m⇤

⌧ m) [1], [4], we find the locations and the associated
input parameters using an `1-norm regularized optimization
problem. In several sparse inverse problems—finding unknown
sparse parameters using a few measurements—`1-norm regu-
larization has shown to accurately recover the sparsity pattern
of the unknown parameter than the `2-norm regularization [5].
Sparsity has been long recognized in power systems, especially
in state and topology estimation problems; however, sparsity
methods are less explored for localizing FO sources [6].

This material is based upon work supported by the National Science
Foundation under Grant No. OAC-1934766 and PSERC project S-87.

Using the standard discrete time Fourier transform (DTFT),
we obtain the complex-valued linear model YK = HKUK ,
where K is the total number of sinusoidal frequencies at all
locations; HK is a block-diagonal matrix of transfer functions,
each evaluated at the unknown sinusoidal frequency; and YK

is the measurement in the Fourier domain corresponding to the
K unknown input frequencies. Finally, UK jointly1 encodes
sparsity in the number of locations and the number of sinusoids
(see In Section II for details). For the above linear model, we
summarize our location recovery method below:

1) First, we use the fast Fourier transform (FFT) to deter-
mine these K frequencies by thresholding the spectrum
of measurements collected over a finite time interval.

2) Second, for the model YK = HKUK , we solve an `1
regularized least squares (henceforth, LASSO) problem
in the complex domain via coordinated descent method
[8] to infer: (i) the number of true locations and the
number of sinusoids at any given location, and (ii) the
frequency, phase, and amplitude of each sinusoid.

Our recovery algorithm is simple as it requires thresholding
the spectrum and solving a convex optimization problem. We
validate its performance on two benchmark systems.

Related literature: In [9]–[11], sources were identified using
spectral properties of the transfer functions between sources
and measurements. Instead, by representing generators’ fre-
quency response as an effective admittance matrix and oscilla-
tions as current injections, [12] identifies sources by comparing
predicted against measured current spectrum, and [13] uses
a Bayesian approach. Finally, in [6], a sparse plus low rank
decomposition of Hankel measurement matrices has been
suggested to localize the sources.

However, unlike our method, algorithms in the above studies
localize sources (mostly single, i.e., m⇤ = 1) but do not jointly
estimate the input. Further, with the exception of works in
[6] and [13], sparsity has not been explored in a systematic
way. The work closest to ours is [13], which considers an
`1-norm regularized optimization framework in a Bayesian
setting. However, [13] models FOs as current injections and
generators as frequency response functions. Instead, we model
FOs as exogenous inputs, which could be genuine oscillations,
malicious attacks, faults, or unmodeled dynamics. Thus, our

1This kind of joint sparsity might not be possible in the time-domain,
especially, for arbitrary forced inputs [7].
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modeling framework and the subsequent optimization proce-
dure apply to find any form of disturbances in dynamical
systems, including in power systems that are modeled using
descriptor models2. Moreover, we consider practical aspects,
including spectral leakage and the measurement.

II. SYSTEM DYNAMICS UNDER FORCED OSCILLATIONS

Consider the following linearized multi-machine dynamics
excited by external unknown inputs in state-space form:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), 8t � 0. (1)

The state vector x(t) 2 Rn includes machine internal dynam-
ics and variables associated with closed-loop controllers. We
model the input u(t) 2 Rm as the forced oscillation vector:

u(t) ,

2

6664

u1(t)
u2(t)

...
um(t)

3

7775
=

2

6664

PM1

l=1 a1,l sin(!1,lt+ �1,l)PM2

l=1 a2,l sin(!2,lt+ �2,l)
...PMm

l=1 am,l sin(!m,lt+ �m,l)

3

7775
(2)

where ar,l � 0, !r,l = 2⇡fr,l � 0, and �r,l are the amplitude,
angular frequency, and phase of the lth sinusoid term at the
rth location, and r 2 {1, . . . ,m}. Finally, y(t) 2 Rp is the
measurement obtained from p sensors. For simplicity, we build
the theory using noise-free measurements, and later consider
measurement noise in simulations.

By modeling forced input as a sum of multiple weighted
sinusoids, we allow for different oscillatory waveforms. Thus,
our approach generalizes the approaches recovering a single
sinusoidal input, which are well studied in the literature [1],
[4]. Let ar(t) = [ar,1 sin(!r,1t+�r,1) · · · ar,Mr sin(!r,Mr t+
�r,Mr )] be the vector of sinusoids at the rth location. We make
the following assumption on u(t) in (1) and ar(t).

Assumption 1: Both u(t) in (1) and ar(t) defined above
are sparse; that is, ku(t)k0 ⌧ m and kar(t)k0 ⌧ Mr, where
kzk0 counts the number of non-zero entries in the vector z.

As PMUs record measurements at discrete time instants, we
sample (1) with the sampling period T (e.g., F =1/T =30–60
Hz for PMUs). Let Ad = exp(AT ) and Bd =

R T
0 exp(A(T�

s))dsB. Let k = 0, 1, . . . and define x[k] , x(kT ), u[k] ,
u(kT ), and y[k] , y(kT ). Suppose that u(t) is a piecewise
constant3 during kT  t  (k + 1)T . Then

x[k + 1]=Adx[k] +Bdu[k], y[k]=Cx[k] (3)

describe the discrete-time sampled model of (1). As our focus
is on oscillations triggered by inputs, we assume x[0] = 0.

Define the matrix-valued transfer function H[z] =C(zI �

Ad)�1
Bd 2 Cp⇥m, where z 2 C. Then, from the standard

linear system analysis, we conclude that Y[z] = H[z]U[z],
where Y[z] 2 Cp⇥1 and U[z] 2 Cm⇥1 are the Z-transforms
of y[k] and u[k]. Finally, at z = exp(j⌦), where ⌦ 2 (0, 2⇡)
and j2 = �1, we have the DTFT representation of (3):

Y[ej⌦] = H[ej⌦]U[ej⌦]. (4)

2Descriptor models can allow us to model disturbances in loads and FACTS
based devices. However, for simplicity, we do not study these models.

3Frequencies of real FOs are smaller than the sampling frequency of PMUs.

The benefit of working in the Fourier (or frequency) domain
is that U[ej⌦] can be expressed as a sum of weighted Dirac
delta functions. As a result, Y[ej⌦] can be expanded in terms
of basis functions that encode both the source location and
frequency of the input sinuosoids. Using this observation, we
later show that the source localization problem can be cast as
a solution to a simple `1 regularized least-squares problem.

Since u(t) in (2) is a sum of sinusoids, it follows that

U[ej⌦]=j⇡

2

6664

PM1

l=1 a1,l ej�1,l [�(⌦+e!1,l)��(⌦�e!1,l)]PM2

l=1 a2,l ej�2,l [�(⌦+e!2,l)��(⌦�e!2,l)]
...PMm

l=1 am,l ej�m,l [�(⌦+e!m,l)��(⌦�e!m,l)]

3

7775

(5)

where �(x) is the Dirac delta function and e!k,l = !k,lT . Note
that U[ej⌦] is non-zero only for ⌦ 2 {±e!1,1, . . . ,±e!m,Mm}.
Suppose that for ⌦ in this set, H[ej⌦] 6= 0. Then, from (4), we
have Y[ej⌦] 6= 0. If this is not the case, we cannot recover the
sinusoid oscillating with ⌦ using measurements. Finally, we
have Y[ej⌦] = Y

⇤[e�j⌦]. Thus, we focus only on e!k,l � 0.
With a slight abuse of notation, let {e!1, . . . , e!K} be the set

of frequencies where Y[eje!l ] = H[eje!l ]U[eje!l ] 6= 0, where
both e!l and K are unknown. Consider the following model:
2

6664

Y[eje!1 ]
Y[eje!2 ]

...
Y[eje!K ]

3

7775

| {z }
,YK

=

2

6664

H[eje!1 ]
H[eje!2 ]

. . .
H[eje!K ]

3

7775

| {z }
,HK

2

6664

U[eje!1 ]
U[eje!2 ]

...
U[eje!K ]

3

7775

| {z }
,UK

(6)

where YK 2 CpK⇥1, HK 2 CpK⇥mK , and UK 2 CmK⇥1.
In light of Assumption 1, note that K ⌧ [M1+. . .+Mm]. Fur-
ther, the non-zero components of U[eje!l ] 2 Cm correspond to
locations with the inputs containing sinusoids of frequency e!l.
Thus, from the sparsity pattern of UK alone we can determine
source locations and their sinusoidal frequencies (see Fig. 1).
The values of UK provide phase and amplitude information.

The model in (6) captures the relationship between measure-
ments and the input locations at multiple frequencies; thus, for
a sinusoid input, i.e., U[eje!l ] is a delta function, Y[eje!l ] is
infinite for any l. This is a natural aspect of taking DTFTs of
infinite time-length sinusoids. However, in practice, we only
use measurements for a finite time interval and use FFTs to
compute Y[eje!l ], which is consequently finite.

III. COMPLEX-LASSO FOR SOURCE LOCALIZATION

In practice, the total number of sensors (p) could be less than
the possible number of sources (m). For example, PMUs can
measure only bus level quantities but not the internal signals
of control devices. Thus, model in (6) is an under-determined
system and we cannot obtain UK by means of ordinary least
squares. As a result, for the model in (6), we consider the `1-
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|
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}
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}

|
{z

}

U[eje!11 ]

U[eje!12 ]

U[eje!41 ]

|{z}

Y[eje!41 ]

Y[eje!11 ]

Y[eje!12 ] =

Y3 G3

U3

| {z }

e!41 e!11 = e!42 e!12

a11 sin[e!11k + �11] a12 sin[e!12k + �12]

a41 sin[e!41k + �41] a42 sin[e!42k + �42]

(a) power dynamics excited by forced oscillations (b) one sided amplitude spectrum of Y3 (c) visualization of linear model in Eq (6) 

y2�

y1�

x[k + 1] = Ax[k] +Bu[k]
y[k] = Cx[k]

�
�u1

�u2
�u3

�u4

Fig. 1. (a) shows the discrete-time power system model with m = 4 possible locations but only locations 1 and 4 are injecting oscillations.
Each of these inputs is a sum of two sinusoids with different parameters except for e!11 = e!42. In Fig. (b), input frequencies are found by
computing the spectrum of the two sensory measurements. Since e!11 = e!42, we see only three dominant peaks in the spectrum, i.e., K = 3,
and the smaller peaks are due to spectral leakage. In Fig. (c), we visualize linear model in (6). For any e!k,l, the four entries (square blocks)
in U[eje!k,l ] correspond to four possible locations. Locations having sinusoid oscillating with e!k,l are highlighted in color. The top input
U[eje!1,1 ] has two non-zero entries (highlighted in brown and green) indicating that locations 1 and 4 have a sinusoid with e!1,1 = e!4,2.

regularized optimization problem to both localize the sources
and identify the frequencies of the sinusoids at each source:

bUK = argmin
UK2CmK⇥1

⇢
1

2
kYK � HKUKk

2
2+�kUKk1

�
(7)

where � � 0 is the tuning parameter. For the vector z, the `1-
norm is kzk1 =

P
i |zi|, where |zi| =

p
Re(zi)2 + Im(zi)2.

The regularization term kUKk1 promotes sparsity in bUK . We
henceforth refer to the problem in (7) as the complex-LASSO.

Akin to UK in (6), define bUT
K = [bU[eje!1 ]T . . . bU[eje!K ]T].

The block diagonal form of HK and additive property of the
`1-norm allow us to compute bU[eje!l ] in a distributed fashion:

bU[eje!l ]=argmin
U2Cm⇥1

⇢
1

2

���Y[eje!l ] � H[eje!l ]U
���
2

2
+�kUk1

�
.

The above optimization problem is computationally convenient
and extremely useful to quickly determine the sources inject-
ing oscillations with a particular frequency of interest.

To solve (7), we need HK , YK , and K. The matrix HK

is computed using the power system matrices (Ad,Bd,C).
If these matrices not available, we can use empirically deter-
mined transfer functions obtained using system identification
methods [9]. To compute K and YK , we obtain the vector-
valued N -point DFT4 of y[L], . . . ,y[N � 1 + L] using

eY[q] , 2

N

N�1+LX

k=L

y[k]e�j 2⇡lk
N (q = 0, 1, . . . , N � 1) (8)

where we choose L � 0 such that y[k], for all k � L, is in
steady state. For any q, recall that k eY[q]k1 = maxi | eY(i)[q]|,
where eY(i)[q] is the ith scalar in eY(i)[q] 2 Cp.

The input (angular) frequencies can be determined using
e!l = 2⇡l/N , where l satisfies k eY[l]k1 6= 0. However, due to
the sensor noise and spectral leakage, k eY[l]k1 could be non-
zero even when e!l is not the true input frequency. The noise
can be attenuated by filtering the measurements. Instead, we
reduce spectral leakage by multiplying measurements with the
Hamming window [14]. For these processed measurements,

4In simulations, for computational speedup, we use the FFT.

let S = {l : k eY[l]k1 > ⌧}, where ⌧ > 0 is the user-defined
threshold. Then K = |S|, where |·| is the cardinality of the set
S, gives us the total number of input frequencies. Finally, we
replace Y[eje!l ] in YK (given by (6)) with eY[l], and evaluate
the corresponding H[eje!l ] at e!l = 2⇡l/N , where l 2 S.

With HK and YK at our disposal, we now can solve (7)
using coordinate descent method [8] in the complex domain.
We summarize our source recovery method in Algorithm 1,
which recovers locations, and input parameters in discrete-
time domain. We obtain the continuous-time frequency as fl =
e!l/(2⇡T ). Instead, we recover amplitudes by |bUK |/⇡, where
| · | is the complex magnitude, applied for entry in bUK .

Algorithm 1: Source localization via complex-LASSO

Input: ⌧ > 0, � � 0, {Y[k]}N�1�L
k=L , and (Ad,Bd,C).

Step 1: Compute eY[q] using (8) and process them
using the Hamming window.

Step 2: Set S = {l : k eY[l]k1 > ⌧} and K = |S|.
Step 3: Let YK = [ eY[l1] . . . eY[lK ]]. Evaluate H[eje!li ]

in (6) using e!li = 2⇡li/N , and li 2 S.
Step 4: Solve complex-LASSO problem in (7) using

the coordinate descent method [8].
Return: e!l; bU[eje!l ]; and source locations: indices of

non-zero entries in bU[eje!l ], l = {1, . . . ,K}.

IV. SIMULATION RESULTS

We apply Algorithm 1 to recover FO locations and oscilla-
tory input parameters in two benchmark power systems. We
add Gaussian noise with the SNR of 10 dB to the measurable
quantities (see below). We let 1/T = F = 30 and N = 600.

Tuning parameter (�) selection: For � = 0, the solution
to (7) is given by the least squares solution. For � � �max ,
kY

T
KHKk1, bUK = 0 (a fully sparse vector) [8, Section 2.5].

Thus, we set � = ↵�max and choose ↵ 2 [0, 1] by performing
a sensitivity analysis with respect to the true positive rate
(TPR)—ratio of the number of correctly identified non-zero
entries in bUK to the number of non-zero entries in UK—
and the false positive rate (FPR)—ratio of the number of
incorrectly identified non-zero entries in bUK to the number

978-1-6654-0823-3/22/$31.00 ©2022 IEEE 
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of non-zero entries in UK . TPR and FPR depend on the
noisy measurements and so does ↵. Thus to get a reliable
and trustworthy ↵, we perform sensitivity analysis for 20
realizations of {y[k]}N�1+L

k=L . We then pick an ↵ that yields
TPR = 1 and FPR = 0 for as many realizations as possible.

A. Case 1: IEEE 68 bus, 16 machine system [15]

4

10

13

Fig. 4. IEEE NETS/NYPS 16 machine 68 bus system [15]. Among
m = 16 excitation control inputs (green circles), only m⇤ = 3
locations (red colored bus no.s: 4, 10, 13) are excited by FO inputs.

Each generator is represented by ten states: the rotor angle,
angular frequency, damper winding flux leakages, and states
corresponding to excitation systems. We obtain the state space
matrices using the power system toolbox (PST) [16]. See
Fig. 4 and Table I for the inputs’ description. We consider
scenarios where PMUs are near and far away from the sources.
For the first, PMUs are at buses 68, 31, and 17 (highlighted
with a blue sensor icon in Fig. 4). For the latter, we place
PMUs at buses 23, 41, and 64 (highlighted with a red sensor
icon in Fig. 4). For all realizations, we correctly determined
the input frequencies by thresholding the power spectrum of
the voltage magnitude measurements (near and far case). Fig.
2 shows the spectrum of an arbitrary measurement realization.

The sensitivity analysis of the parameter ↵ in terms of TPR
and FPR for the two scenarios are shown in Fig. 3 (a) and
(b), respectively. Due to space limitations, we focus only on
nearby PMUs scenario. For 0.08  ↵  0.14, we were able to
accurately find true FO locations in most of the realizations.
Finally, for ↵ = 0.14, we report average and standard deviation
of estimated input parameters in Table I.

B. Case 2: Reduced WECC 179 bus 29 machine system [17]

Each generator is modeled as a second order classical model
and has two states: rotor angle and angular frequency. We
use the small signal analysis tool (SSAT) to extract state
space matrices of the WECC model described in [17]. We
add FO input signals (parameters reported in Table I) to the
mechanical torque of three generators at buses, labeled 5, 14,
and 27 in [17, Fig. 1]. The PMU buses are 4, 18, and 47. Our
measurements consist of the rotor angle of generators [10].
Fig. 3 (c) illustrates the sensitivity analysis of the parameter

↵ in terms of TPR and FPR. Note that for ↵ = 0.11, we found
the correct source locations.

V. CONCLUSIONS

This paper studies the effectiveness of complex-LASSO
for source localization and input parameters estimation. Our
problem formulation in the frequency domain clearly shows
the sparsity in the number of locations and the number of
sinusoids at a location. Thus, we cast the localization problem
as an `1-regularized least squares problem, which we solve
numerically via a complex-valued coordinate descent method.
Our localization Algorithm 1 is simple and has a potential
to be integrated into real-time grid operations. For simplicity,
we present our results assuming the knowledge of dynamic
models. However, our approach can even work with empir-
ically determined transfer functions, and leave this study for
future research. We plan also to compare our method to that of
dissipating energy flow methods and data-driven approaches.
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TABLE I
TRUE AND ESTIMATED VALUES OF THE AMPLITUDE, FREQUENCY AND PHASE OF THE FORCED OSCILLATIONS INPUTS

System
under
study

FO
Location

Input Signal
Amplitude (p.u.) Frequency (Hz) Phase (rad)

Parameter True Estimate (�)* Parameter True Estimate Parameter True Estimate (�)*

68-bus system
(near PMUs)

4 a4,1 0.01 0.0126 (0.003) f4,1 2 2 �4,1 0.3 0.3302 (0.024)
a4,2 0.01 0.0081 (0.0018) f4,2 2.5 2.5 �4,2 0.4 0.4401 (0.012)

10 a10,1 0.01 0.0087 (0.005) f10,1 1.5 1.5 �10,1 0.1 0.1326 (0.01)
a10,2 0.01 0.0093 (0.006) f10,2 1 1 �10,2 0.3 0.2804 (0.024)

13 a13,1 0.02 0.0169 (0.004) f13,1 3.5 3.5 �13,1 0.1 0.0893 (0.007)
a13,2 0.02 0.0170 (0.002) f13,2 0.8 0.8 �13,2 0.2 0.1771 (0.0052)

WECC-179
bus system

5 a5,1 0.02 0.0244 (0.002) f5,1 1 1 �5,1 0.3 0.2993 (0.0133)
a5,2 0.01 0.0117 (0.005) f5,2 0.8 0.8 �5,2 0.4 0.3405 (0.0305)

14 a14,1 0.03 0.0214 (0.008) f14,1 0.7 0.7 �14,1 0.2 0.2134 (0.0068)
a14,2 0.02 0.0170 (0.001) f14,2 1.5 1.5 �14,2 0.3 0.2613 (0.0048)

27 a27,1 0.04 0.0350 (0.007) f27,1 2 2 �27,1 0.1 0.1076 (0.0098)
a27,2 0.01 0.0094 (0.003) f27,2 1.2 1.2 �27,2 0.2 0.2567 (0.0457)

* Standard deviation of estimated parameters over 20 realizations of noisy measurements.
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Fig. 2. One-sided power spectrum of measurements for different case studies. In each plot, we overlay the spectrum associated with different
measurement buses. The black dashed line represents the thresholding parameter ⌧ , which equals 0.2 ⇥ 10�3 in Fig. (a) and (b), and
0.4 ⇥ 10�3 in Fig. (c). Theoretically, if inputs are observable, the spectrum of each PMU measurement should contain dominant peaks at
all input frequencies. However, as evident in all plots, not even for one PMU, we can see dominant peaks at all input frequencies. This
can be attributed to the measurement noise and spectral leakage. However, by considering all PMUs, we see sharp dominant peaks at all
input frequencies. Interestingly, for IEEE-68 bus case, the magnitude of spectral peaks is smaller when PMUs are away from the true source
locations. Thus it makes sense to consider measurements from nearby PMUs if we have prior coarse knowledge of source locations.
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Fig. 3. Sensitivity analysis of the scaling parameter ↵ in terms of TPR and FPR for different cases. The error bars in the figures illustrate
the maximum and minimum of twenty values (as described in the main text) of TPR and FPR. Instead, the solid line is the average value
Interestingly, from panels (a) and (b), we note that the PMUs in the vicinity of the FO sources resulted in a wider range of ↵ values that
yield a better TPR (100%) and FPR (0%).
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